Skip to content

Rectilinear Motion

Tags
Calculus
Cegep/2
Word count
318 words
Reading time
2 minutes

Motion in a straight line

Displacement:

t1t2v(t)dt=s(t2)s(t1)

Distance travelled:

t1t2|v(t)|dt

Examples

An object moves along the x-axis with an acceleration given by a(t)=costsint with initial velocity of 1cms.

  1. Find both the displacement and the distance travelled from t1=0 to t2=π.
  2. If initial position is 3cm, find the position function s(t).
v(t)=a(t)dt=(costsint)dt=sint+cost+C1=sin0+cos0+CC=0v(t)=sint+costdisplacement=t1t2v(t)dt=0π(sint+cost)dt=[cost+sint]0π=cosπ+sinπ(cos0+sin0)=2cm

We need to determine the sign of v(t).

sint+cost=0sint=costtant=1t=3π4distance travelled=0π|sint+cost|dt=03π4(sint+cost)dt+3π4π(sint+cost)dt=(cost+sint)03π4+(cost+sint)3π4π=(cos3π4+sin3π4)(cos0+sin0)cosπ+sinπ(cos3π4+sin3π4)=22cm
s(t)=v(t)dt=v(t)dt=(sint+cost)dt=cost+sint+C23=cos0+sin0+C2C2=4s(t)=cost+sint+4

Contributors

Changelog